

Journal of Organometallic Chemistry 524 (1996) 95-101

Novel chiral compounds of Group 13 metals: the X-ray crystal structures of $[((S)-2-methylbutyl)_2MP^{t}Bu_2]_2$ (M = Ga or In)

M. Azad Malik, Stephen W. Haggata, Majid Motevalli, Paul O'Brien *-1

Department of Chemistry, Queen Mary and Westfield College, Mile End Road, London El 4NS, UK

Received 7 February 1996

Abstract

A series of novel chiral organometallic compounds has been synthesised and characterised by NMR, FT-IR and mass spectrometry. The X-ray crystal structures of the dimeric compounds $[(C_5H_{11})_2MP^tBu_2]_2$ (M = Ga, In; $C_5H_{11} = (S)$ -2-methylbutyl) are reported.

Keywords: MOCVD; III/V; Pnictide

1. Introduction

There have been several recent reports concerning the preparation of single-source molecular precursors of the type $R_2MER'_2$ (M = Al, Ga, I; E = pnictide) for the deposition of III/V materials [1-3] by MOCVD. The original examples of these compounds were described by Cowley and Jones [4], and Bradley, Faktor and coworkers [5]. In the present work a chiral substituent has been introduced into compounds of this type, and a series of compounds $[R_2MPR'_2]_n$ (R = (S)-2-methylbutyl; M = Ga, In; R' = ¹Bu, Ph) has been synthesised and characterised.

2. Experimental

The majority of compounds described are extremely sensitive to oxygen and/or moisture. All operations were performed in an atmosphere of oxygen free nitrogen, or argon, using Schlenk-type glass apparatus. All solvents were distilled under nitrogen from sodium benzophenone ketyl.

2.1. Chemicals

(S)-1-bromo-2-methylbutane, magnesium turnings, gallium(III) trichloride, indium(III) trichloride, "BuLi,

 $HPPh_2$ and $HP'Bu_2$ were all purchased from Aldrich Chem. Co. Ltd.

2.2. Physical measurements

¹H and ¹³C NMR spectra were obtained using a Bruker WH250 Fourier transform spectrometer with TMS as a reference. ³¹P{¹H} spectra obtained were referenced to 85% H₃PO₄. Infra-red spectra were recorded between CsI plates with a Perkin-Elmer 1720 X FT-IR spectrometer using mineral oil (Nujol) mulls where necessary; mass spectra were obtained using an AEI MS902 spectrometer, only the principal peaks are reported.

2.3. Crystallography

Measurements were made on a sample mounted in a glass capillary with an Enraf-Nonius CAD4 diffractometer operating in the $\omega - 2\theta$ scan mode with graphite-monochromated Mo K a radiation as described previously [6]. The structures were solved via standard heavy-atom procedures and refined by using full-matrix least-squares methods [7] with scattering factors calculated by using the data from Ref. [8]. All non-hydrogen atoms were refined with anisotropic displacement factors; hydrogen atoms were geometrically ideally positioned and refined according to the riding model using isotropic displacement parameters. Crystal data and the details of the intensity measurements and refinement for compounds 2 and 5 are given in Table 1. Atomic coordinates are given in Table 2. Selected bond lengths and angles for compounds 2 and 5 are given in Table 3.

^{*} Corresponding author.

¹ Present address: Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.

 Table 1
 Crystal data, intensity measurements and structure refinement

Contraction and a second s	2	5
Formula	C 36 H 80 Ga 2 P2	$C_{36}H_{80}In_2P_2$
М	714.38	804.58
<i>T</i> (K)	293(2)	293(2)
Crystal size (mm ³)	$0.31 \times 0.15 \times 0.25$	0.18×0.14×0.19
Crystal system	Monoclinic	Orthorhombic
Space group	C2	P2 ₁ 2 ₁ 2 ₁
a (Å)	21.476(2)	10.860(1)
Ь(Å)	20.800(2)	18.223(2)
c (Å)	15.948(1)	23.740(2)
α (°)	90	90
β (°)	92.56(10)	90
γ (°)	90	90
V (Å ³)	6671.6(1)	4265.6(7)
Z	6	4
$D_{\rm c}(\rm g~cm^{-3})$	1.067	1.253
μ (mm ^{~1})	1.303	1.176
F(000)	2328	1696
0min/max	1.90 to 24.96	1.41 to 26.96
Radiation	ΜοΚα	ΜοΚα
λ (Å)	0.71069	0.71069
Total no. of reflections	6389	5305
No. of unique reflections	6052	5169
No. of observed reflections	2945	2751
Final R indices	$R_1 = 0.082$	R1 == 0.0535
[<i>1</i> > 2 <i>σ</i> (<i>1</i>)]	,	
R indices (all data)	$R_1 = 0.2117$,	$R_1 = 0.1383$,
	$wR_2 = 0.3027$	$wR_2 = 0.1362$

 $\frac{R_1}{F_c} = \sum ||F_0|| = |F_c| + |\sum |F_0|; \quad wR_2 = [\sum \{\omega(F_0^2) = F_c^2/[\sum \{\omega(F_0^2)^2]\}^{1/2}]$

 $w = 1/[\sigma(F_o^2) + (0.1761P)^2 + 7.69P], \text{ where } P = [\max(F_o^2) + 2F_e^2]/3 (Compound 2).$

 $w = 1/[\sigma(F_0^2 X 0.0753P)^2 + 0.00P]$, where $P = [\max(F_0^2) + 2F_0^2]/3$ (compound 5).

Tables of H atom coordinates, all bond lengths and angles, and anisotropic displacement factor coefficients are included in the supplementary material.

2.4.
$$M(C_3H_{11})_3$$
 ($M = Ga, In$)

The synthesis of the trialkylgalium or -indium compounds was carried out using the literature method [9].

2.5. $Ga(C_{s}H_{11})_{2}Cl(1)$

A solution of $Ga(C_5H_{11})_3$ (1.94 g, 6.83 mmol) in petroleum spirits (60-80°C) (40 cm³) was added to a solution of GaCl₃ (0.61 g, 3.41 mmol) in petroleum spirits (60-80°C) (40 cm³). The flask was equipped with a reflux condenser and the mixture was refluxed overnight at 60°C. Volatile material was removed under vacuum leaving behind the colourless gallium dialkylchloride, yield 1.65 g (97.6%) which was used without purification. NMR data. ¹H (C_6D_6 , 25°C, 250 MHz): δ 1.19 [4H, m, Ga(CH₂)], 1.89 [2H, m, CH], 1.05 [6H, d, HCCH₃], 1.38 [4H, m, HCCH₂], 096 [6H, t, CH₂CH₃]. ¹³C NMR (C_6D_6 , 25°C, 250 MHz): δ 32.07 [Ga(CH₂)], 33.29 [CH], 24.53 [HCCH₃], 34.57 [HCCH₂], 12.74 [CH₂CH₃].

2.6. $C_5 H_{11}$)₂GaP'Bu₂ (2)

LiP^tBu₂ was prepared by the addition of HP^tBu₂ (5 g, 33.4 mmol) to a stirred solution of ⁿBuLi (14.24 cm³ of 2.5 M solution in hexanes, 35.6 mmol) diluted further with petroleum spirits (60–80°C, 50 cm³, 0°C). The solution was left to stir overnight, concentrated, and then left to crystallise. $(C_5H_{11})_2$ GaCl (1) (2.56 g, 10.34 mmol) was dissolved in ether (60 cm³) and stirred at 0°C. LiP^tBu₂ (1.57 g, 10.33 mmol) was slowly added and the mixture was allowed to reach ambient temperature. After stirring overnight, the solvent was removed under vacuum leaving a white solid. Petroleum spirits (60–80°C) (30 cm³) were added to the solid. After decanting the supernatant, the solution was concentrated and left to crystallise at -25° C. Colourless, triangular shaped crystals formed, yield 3.12 g (84%), m.p. 81°C.

NMR data. ¹H (C₆D₆, 25°C, 250 MHz): δ 1.25 [8H, m. Ga(CH₂)], 2.09 [4H, m, CH], 1.31 [12H, d, HCCH₃], 1.66 [8H, m, HCCH₂], 1.11 [12H, t, CH₂CH₃], 1.51 [36H, dd, ³J_{H=P} = 6.25 Hz, PC(CH₃)₃]. ¹³C NMR (C₆D₆, 25°C, 250 MHz): δ 30.34 [t, ²J_{C=P} = 7.72 Hz, Ga(CH₂)], 35.36 [CH], 24.66 [HCCH₃], 36.17 [HCCH₂], 12.99 [CH₂CH₃], 32.43 [d, ¹J_{C=P} = 13.19 Hz, PC(CH₃)₃], 33.64 [PC(CH₃), ³¹P[⁴H} NMR (C₆D₆, 25°C, 250 MHz): δ 37.71(s). Mass spectrum (m/z): R₂M₂P₂R'₃ 517 (5.9%), R₃MPR'₂ 358 (2.8%), R⁺ 71 (10.1%), R'⁺ 57 (76.3%). Major IR bands (cm⁻¹): 2952(s), 2901(s), 2872(s), 1460(s), 1376(m), 1365(m), 1261(m), 1141(m), 1081(m), 1019(m), 668(m), 601(m).

2.7. $(C_s H_{11})_2 GaPPh_2$ (3)

LiPPh₂ was prepared from the addition of HPPh₂ (5 g, 26.6 mmol) to a stirred solution of "BuLi (10.6 cm³ of 2.5 M solution in hexanes, 26.6 mmol) in ether (50 cm³) at 0°C. After stirring overnight the mixture was concentrated and the yellow solid, LiPPh₂, was obtained by crystallisation at room temperature. (C_5H_{11})₂GaCl (5.08 g, 20.4 mmol) was dissolved in diethylether (60 cm³) and stirred at 0°C. LiPPh₂ (3.92 g, 20.4 mmol) was added slowly to the stirred solution over half an hour. The mixture was allowed to warm to room temperature and was then stirred for 3 days. The solvent was removed under vacuum and the product was extracted with benzene (40 cm³). The solution was filtered and then concentrated. At saturation, pentane

Table 2 (continued)

Table 2 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$)

paramete	$\operatorname{ers}\left(\mathbf{A}^{*}\times\mathbf{I0}^{*}\right)$			
Atom	x	У	z	Ueq
[(C,H,)2GaP'Bu2]2 (2)		
Ga(1)	8748(1)	8583(1)	7388(1)	52(1)
Ga(2)	8167(1)	10109(1)	6445(1)	51(1)
Ga(3)	9529(1)	3972(1)	8944(1)	53(1)
P(1)	8053(1)	8955(1)	6113(2)	51(1)
P(2)	8872(1)	9771(1)	7748(2)	47(1)
P(3)	0	4789(2)	0	48(1)
P(4)	0	3154(2)	0	47(1)
C (1)	7222(4)	8713(5)	6132(7)	59(3)
C(2)	6815(5)	9143(6)	5526(9)	91(5)
C(3)	7093(6)	7999(6)	5948(10)	97(5)
C(4)	6980(5)	8836(6)	7099(7)	80(4)
C(5)	8373(6)	8679(5)	5025(7)	75(4)
C(6)	8500(6)	7943(5)	5017(9)	90(5)
C(7) C(8)	9025(6) 7022(6)	9008(6) 8855(7)	4995(7)	82(4)
C(8) C(9)	7933(6) 9671(4)	8855(7) 10156(5)	4174(7) 7629(7)	93(5) 50(2)
C(9) C(10)	10115(5)	10130(3)	8404(7)	59(3) 74(4)
C(10)	9926(5)	9863(5)	6820(8)	74(4)
C(12)	9615(5)	10861(5)	7504(7)	69(4)
C(12)	8599(5)	9922(4)	8931(7)	62(3)
C(14)	8695(6)	10624(5)	9240(8)	78(4)
C(15)	8949(6)	9467(6)	9577(7)	79(4)
C(16)	7875(5)	9801(6)	8902(8)	82(4)
C(17)	8331(5)	8105(5)	8374(7)	72(4)
C (18)	8004(5)	7461(5)	8184(7)	67(4)
C(21)	8350(7)	7022(6)	7578(8)	97(5)
C (19)	7863(6)	7173(5)	9104(9)	91(5)
C(20)	7527(6)	6522(7)	9055(11)	112(6)
C(22)	9538(5)	8142(6)	7024(9)	81(4)
C(23)	9986(6)	8036(8)	7950(10)	133(5)
C(24)	10668(13)	8173(15)	7814(20)	239(14)
C(25)	10480(7)	7501(6)	7123(8)	110(5)
C(26)	10247(19)	7813(20)	8922(22)	327(21)
C(27)	8629(6)	10662(5)	5584(7) 456 4(7)	70(4)
C(28) C(29)	8341(6) 8757(7)	10697(5) 11287(6)	4564(7) 4125(8)	64(4) 90(5)
C(30)	8542(7)	11267(8)	3108(8)	104(6)
C(31)	7644(6)	10815(9)	4453(9)	109(6)
C(32)	7353(5)	10559(5)	6766(8)	79(4)
C(33)	7449(7)	11278(6)	7036(10)	113(5)
C(34)	7220(12)	11430(11)	7939(17)	192(11)
C(35)	7305(12)	12175(14)	8249(20)	257(14)
C(36)	7833(16)	11921(29)	7208(24)	358(26)
C(37)	10588(5)	5304(5)	9380(7)	59(3)
C(38)	10872(6)	5834(6)	9965(8)	90(4)
C(39)	10265(6)	5623(6)	8533(7)	77(4)
C(40)	11072(5)	4891(6)	9065(7)	69(4)
C(41)	10634(5)	2623(5)	9575(6)	55(3)
C(42)	11046(5)	3056(6)	9002(7)	70(4)
C(43)	10424(5)	2070(5)	8995(8)	69(4)
C(44)	11027(5)	2368(5)	10357(7)	63(3)
C(45)	8599(5)	3915(6)	8833(8)	69(3)
C(46)	8207(5)	4548(6)	8574(8)	73(4)
C(47)	7501(6)	4280(6)	8411(9)	92(5)
C(48)	7043(7)	4819(8)	8100(10)	114(6)
C(49)	8443(5)	4919(6)	7765(8)	81(4)
C(50)	9880(6)	4010(7)	7704(7)	81(4)
C(51)	9603(7)	3355(13)	7129(9)	173(10)
C(52)	10098(7)	3106(6)	6596(8)	102(4)
C(53)	9989(7)	2541(6)	6144(8) 6816(22)	112(5)
C(54)	8980(15)	3474(20)	6816(22)	333(18)

	(commucu)			
Atom	x	у	2	U _{eq}
(C ₅ H ₁₁	$)_{2} In P^{t} Bu_{2}]_{2} (5)$		an a	
In(1)	9170(Î)	450(1)	9310(1)	34(1)
In(2)	10182(1)	- 456(1)	10778(1)	37(1)
P(1)	10523(3)	- 717(2)	9684(1)	32(1)
P(2)	8827(3)	727(2)	10405(1)	33(1)
C (1)	12389(11)	- 661(6)	9497(5)	32(3)
C(2)	13255(13)	- 1209(8)	9830(6)	58(4)
C(3)	12651(14)	- 763(8)	8873(5)	60(4)
C (4)	12856(12)	102(7)	9667(6)	42(3)
C (5)	9741(15)	- 1614(7)	9415(5)	41(3)
C(6)	8334(13)	- 1655(7)	9675(5)	50(4)
C (7)	9591(7)	- 1596(8)	8775(6)	63(4)
C(8)	10544(17)	- 2294(7)	9597(6)	68(5)
C(9)	9586(15)	1611(7)	10675(5)	48(3)
C(10)	9665(18)	1655(8)	11306(5)	67(5)
C(11)	8901(18)	2297(7)	10466(6)	73(5)
C(12)	11013(15)	1618(8)	10450(6)	61(4)
C(13)	6945(13)	688(7)	10590(5)	46(3)
C(14)	6478(14)	- 75(8)	10402(6)	53(4)
C(15)	6703(15)	737(8)	11230(5)	66(5)
C(16)	6082(17)	235(8)	10276(7)	76(5)
C(17)	7263(13)	213(7)	8881(5)	45(3)
C(18)	7112(12)	414(8)	8261(4)	42(3)
C(19)	8056(14)	- 34(8)	7896(6)	62(4)
C(20)	5690(13)	374(9)	8027(5)	59(4)
C(21)	4757(14)	946(10)	8270(6)	75(5)
C(22)	10491(14)	1196(8)	8832(5)	53(4)
C(23)	9902(13)	1 755 (7)	8439(5)	41(3)
C(24)	8840(15)	2234(8)	8723(6)	60(4)
C(25)	11006(14)	2213(7)	8146(5)	52(4)
C(26)	10549(18)	2732(9)	7693(6)	82(5)
C(27)	8772(16)	- 1154(7)	11263(5)	55(4)
C(28)	9315(15)	- 1738(7)	11668(5)	49(4)
C(29)	8161(16)	- 2031(8)	12036(6)	73(5)
C(30)	9987(18)	- 2356(8)	11321(8)	79(5)
C(31)	10640(23)	- 2951(11)	11686(10)	124(8)
C(32)	12079(14)	- 96(9)	11208(6)	61(4)
C(33)	12405(14)	- 490(10)	11751(5)	63(4)
C(34)	13110(22)	- 1210(11)	11586(10)	133(10)
C(35)	13378(21)	50(15)	12118(8)	125(10)
C(36)	12715(28)	692(14)	12327(9)	152(12)

 $U_{\text{(eq)}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

(10 cm³) was added slowly. Colourless crystals were obtained from crystallisation at -25° C, although they were solvent dependent and irregular in shape, yield 6.2 g (76%), m.p. 116°C.

NMκ data. ¹H (C₆D₆, 25°C, 250 MHz): δ 1.06 [8H, m, Ga(CH₂)], 1.75 [4H, m, CH], 0.82 [12H, d, HCCH₃], 1.38 [8H, m, HCCH₂], 0.88 [12H, t, CH₂CH₃], (7.51, 7.02, 7.02; C₆H₅). ¹³C NMR (C₆D₆, 25°C, 250 MHz): δ 25.66 [t, Ga(CH₂)], 34.50 [CH], 24.62 [HCCH₃], 35.47 [HCCH₂], 12.90 [CH₂CH₃], (34.96(t), 136.33(t), 129.26, 129.07; C₆H₅). ¹³P {¹H} NMR (C₆D₆, 25°C, 250 MHz): δ – 43.19(s). Mass spectrum (m/z): R₄M₂P(C₆H₅)₂ 609 (2.4%), R'₄P₂ 370 (25.3%), RGaPR'₂ 327 (0.6%), (C₅H₁₁)₂M⁺ 211 (100%), RGa⁺ 142 (2.5%), R'₂P⁺ 185 (45.8%), R'P⁺

Table 3 Selected bond lengths (Å) and angles (°)

Construction of the second	[(C ₅ H ₁₁) ₂ -	[(C ₅ H ₁₁) ₂ -
	GaP ^t Bu ₂] ₂	$InP^{t}Bu_{2}]_{2}$
M(1)-C(22)	2.025(11)	2.20(1)
M(1) - C(17)	2.021(11)	2.18(1)
M(1)-P(1)	2.491(3)	2.664(3)
M(1)-P(2)	2.539(3)	2.669(3)
M(2)-C(27)	2.019(11)	2.21(1)
M(2)-C(32)	2.058(11)	2.23(1)
M(2) - P(1)	2.463(3)	2.660(3)
M(2)-P(2)	2.515(3)	2.686(3)
Ga(3)-C(45)	2.001(10)	
$G_{a}(3) - C(50)$	2.032(11)	
Ga(3)-P(3)	2.501(3)	
Ga(3)-P(4)	2.504(2)	
C(22)-M(1)-C(17)	112.2(5)	113.1(4)
C(22)-M(1)-P(1)	114.6(4)	111.7(4)
C(17) = M(1) = P(1)	116.1(3)	115.4(3)
C(22)-M(1)-P(2)	114.7(3)	117.4(4)
C(17) = M(1) = P(2)	111.7(3)	112.5(3)
P(1)-M(1)-P(2)	85.1(9)	83.64(9)
C(27)=M(2)=C(32)	109.7(5)	117.3(5)
C(27)-M(2)-P(1)	118.3(3)	119.1(4)
C(32) - M(2) - P(1)	114.4(3)	113.2(4)
C(27)=M(2)=P(2)	110.9(3)	108.7(4)
C(32)-M(2)-P(2)	115.8(3)	109.4(4)
₽(1)=M(2)=P(2)	86.2(9)	83.39(9)
M(2)=P(1)=M(1)	95.6(9)	96.9(1)
M(2)=P(2)=M(1)	93.1(9)	96.2(1)
C(45)=Ga(3)=C(50)	109.7(5)	
C(45)=Ga(3)=P(3)	117.8(3)	
C(50)=Ga(3)=P(3)	113.2(6)	
C(45)=Ga(3)=P(4)	112.6(3)	
$\hat{C}(30) = \hat{G}_{a}(3) = P(4)$	116,5(4)	
P(3)-Ga(3)-P(4)	85.6(9)	

M = indium or gallium in the general position. Ga(3) = gallium molecule with C₂ axis.

108 (30.5%), R'^+ 77 (2.2%), R^+ 71 (2.2%). Major IR bands (cm⁻¹): 2935(s), 2864(s), 1480(m), 1460(s), 1439(s), 1377(m), 1136(m), 1085(m), 1045(w), 1025(m), 739(s), 695(s), 675(m), 560(m), 508(m), 491(m).

2.8. In(C₅H₁₁),Cl (4)

 $C_5H_{11}MgBr$ (46.85 cm³ of 0.397 M solution, 18.60 mmol) was added slowly to a suspension of InCl₃ (2.06 g, 9.30 mmol) in ether (100 cm³) at 0°C over 1 h. After stirring overnight, all volatiles were removed leaving a white residue that was extracted with pentane (50 cm³). The solution was filtered and pentane removed under vacuum to leave a colourless liquid, yield 2.7 g (99%). The compound was used without purification.

NMR data. ¹H ($C_6 D_6$, 25°C, 250 MHz): δ 1.57 [4H, m, In(CH_2)], 2.06 [2H, m, CH], 1.05 [6H, d, HCC H_3], 1.32 [4H, m, HCC H_2], 0.96 [6H, t, CH₂CH₃], ¹³C NMR ($C_6 D_6$, 25°C, 250 MHz): δ 37.75 [In(CH_2)],

35.43 [CH], 25.57 [HCCH₃], 34.83 [HCCH₂], 12.87 [CH₂CH₃].

2.9. $(C_5 H_{11}) In P' Bu_2$ (5)

 (C_5H_{11}) , InCl (2.26 g, 7.73 mmol) was dissolved in petroleum spirits (60-80°C) (50 cm³) and stirred at 0°C. LiP¹Bu₂ (1.14 g, 7.73 mmol) was added to the stirred solution over half an hour. The mixture was allowed to warm to ambient temperature and stirred overnight. The solvent was removed under vacuum leaving behind a white/yellow solid which was extracted with pentane (50 cm³). A yellow solid remained undissolved which was probably unreacted LiP'Bu2. The supernatant was decanted and the resulting solution concentrated. After 48 h at -25° C, colourless, crystalline, rod-like crystals formed, yield 2.43 g (77%), m.p. 86°C. NMR data. ¹H (C₆D₆, 25°C, 250 MHz): δ 1.30 [8H, m, In(CH₂)], 2.11 [4H, m, CH], 1.31 [12H, d, HCCH₃], 1.62 [8H, m, HCC H_2], 1.13 [12H, t, CH₂C H_3], 1.48 [36H, dd, ${}^{3}J_{H-P}$ = 6.25 Hz, PC(CH₃)₃]. ¹³C NMR (C₆D₆, 25°C, 250 MHz): δ 30.58 [t, ${}^{2}J_{C-P}$ = 8.24 Hz, In(CH₂)], 35.46 [CH], 24.94 [HCCH₃], 35.53 [HCCH₂], 12.36 [CH₂CH₃], 31.41 [d, ${}^{1}J_{C-P} = 10.94$ Hz, PC(CH₃),], 33.14 [PC(CH₃),]. ${}^{31}P{}^{1}H{}$ NMR (C₆D₆, 25°C, 250 MHz): δ 46.02(s). Mass spectrum (*m*/z): R₄M₂P₂R'₃ 747 (0.2%), $R_3M_2P_2R'_4$ 733 (5.1%), $R_3MP_2R'_3$ 676 (4.1%), $\mathbf{R}_{11}\mathbf{M}_{2}\mathbf{P}\mathbf{R}_{2}^{\prime}$ 659 (4.1%), ($\mathbf{C}_{5}\mathbf{H}_{11}$), $\mathbf{\tilde{M}}^{+}$ 257 (100%), ¹¹⁵In 115 (71.5%), \mathbf{R}^{+} 71 (4.7%), \mathbf{R}'^{+} 57 (20.3%). Major IR bands (cm⁻¹): 2922(s), 1457(s), 1376(m), 1364(m), 1261(w), 1019(m), 665(m), 565(w).

2.10. (C₅H₁₁), InPPh₂ (6)

 $(C_5H_{11})_2$ InCl (3.2 g, 10.9 mmol) was dissolved in ether (50 cm³) and stirred at 0°C. LiPPh₂ (2.05 g, 10.9 mmol) was slowly added and the reaction mixture was stirred overnight after reaching room temperature. The solvent was removed and the product extracted with petroleum spirits (60-80°C, 40 cm³). The filtrate was concentrated and left to crystallise at - 25°C. A pure, colourless, crystalline compound was obtained, yield 4.2 g (87.5%), m.p. 81°C. NMR data. ¹H (C₆D₆, 25°C, 250 MHz): δ 1.16 [8H, m, Ga(CH₂)], 1.72 [4H, m, CH], 0.95 [12H, d, HCC H_{3}], 1.40 [8H, m, HCC H_{2}], 0.93 [12H, t, CH_2CH_3], (7.59, 7.11, 7.11; C_6H_5). ¹³C NMR ($C_6 D_6$, 25°C, 250 MHz): δ 27.25 [t, In(CH₂)], 35.61 [CH], 25.49 [HCCH₄], 35.78 [HCCH₂], 13.07 $[CH_2CH_3]$, (134.83(t), 135.53(t), 129.48, 128.88; C_6H_5). ³¹P{¹H} NMR (C_6D_6 , 25°C, 250 MHz): δ -50.72(s). Mass spectrum (*m/z*): R₄M₂PR'₂ 731 (0.6%), RMP₂R'₂ 403 (1.8%), RMPR'₂ 371 (9.3%), R'_4P_2 370 (35.6%), R_2M^+ 257 (100%), R'_2P^+ 185 (32.5%), R'^+ 77 (4.7%), R^+ 71 (3.5%). Major IR bands (cm^{-1}) : 2922(s), 2855(s), 1461(s), 1439(s), 1377(m), 1261(m), 1132(s), 1044(m), 1023(m), 742(s), 695(s), 558(m), 489(m).

 $(M = Ga \text{ or } In; R = C_5 H_{11}, R' = "Bu \text{ or } Ph.)$

3. Results and discussion

The parent alkyls and chloroalkyls are very sensitive to both oxygen and moisture. The indium compounds are also light sensitive. The compounds MR_3 (M = Ga or In; $R = C_5 H_{11}$) are less pyrophoric, appear to have lower vapour pressures than Me₃Ga [10] or Me₃In [11] and are consequently less hazardous to handle. In all compounds the In-CH₂ resonances in the NMR spectra appear at lower field than those for the corresponding Ga-CH₂ resonances, as expected. The differences in the chemical shift for the M-CH₂ protons range from 0.1 ppm in compounds MR₃ to 0.3 ppm in MR₂Cl. All compounds show a single set of resonances, which indicates the presence of only one species. Compounds 2, 3, 5 and 6 are probably dimeric in solution because of carbon-phosphorus splittings observed in the ¹³C NMR spectra. The ¹H NMR spectra of $(C_5H_{11})_2$ GaP'Bu₂ (2) and $(C_5H_{11})_2 \ln P'Bu_2$ (5) both give signals in the alkyl region typical of the chiral ligand.

The ¹³C NMR spectrum of 5 shows a triplet at δ 30.58 ppm for the In-CH₂ carbon split by two equiva-

lent phosphorus atoms, ${}^{2}J_{C_{-P}} = 8.24$ Hz. The tertiary carbons [(CH₃)₃C_a, (CH₃)₃C_b]P give a bigger splitting and a doublet is seen at δ 31.41 ppm, ${}^{1}J_{C_{-P}} = 10.94$ Hz, suggesting that, in this case, the resonances for the tertiary carbons of the two alkyl substituents on the prochiral phosphorus have identical chemical shifts and overlap completely. ${}^{31}P{}^{1}H{}$ NMR spectra give singlets at δ 37.71 ppm for 2 and δ 46.02 ppm for 5. This compares well with δ 28.41 ppm for [Me₂GaP'Bu₂]₂ [12] and δ 39.24 ppm for [Me₂InP'Bu₂]₂ [12].

The ¹H NMR spectra of $(C_5H_{11})_2GaPPh_2$ (3) and $(C_5H_{11})_2InPPh_2$ (6) give the expected ratio of alkyl to aromatic protons. The ¹³C NMR spectra suggest decomposition in both 3 and 6 over a period of time. The δ -CH₂ carbon in 3 gives a triplet at δ 24.06 ppm, ${}^2J_{C-P} = 9.49$ Hz, for the δ -C resonance split by the two phosphorus nuclei of the Ga₂P₂ core. Similar splitting patterns are observed for 3 in the aromatic region. The phosphorus atoms are prochiral and therefore the tertiary carbons in the aromatics, $(C_{a,b})P$, are inequivalent, producing two doublets with identical coupling constants but slightly different chemical shifts which overlap to give a triplet at δ 134.19 ppm, ${}^1J = 16.29$ Hz. The $(C_{a,b})CP$ carbons have similar splitting patterns. The resonances for the indium analogue 6 are listed in the experimental section.

The ³¹P{¹H} NMR spectrum of 6 shows a large singlet at $\delta - 50.72$ ppm. This assignment can be

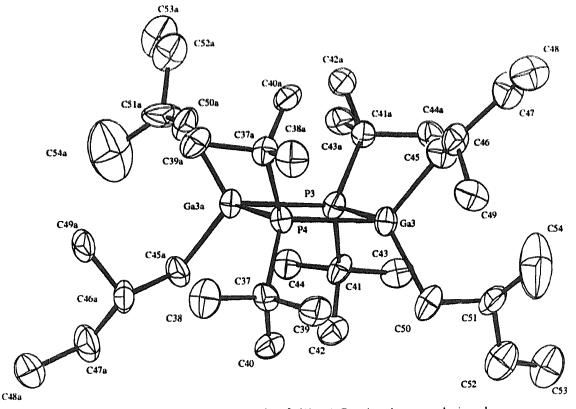


Fig. 1. Molecular structure of $[(C_5H_{11})_2GaP^1Bu_2]_2$ (2) with C_2 -axis and atom numbering scheme.

compared with a similar signal in the ³¹P{¹H} NMR spectrum attributed to $[Me_2InPPh_2]_3$ [13] at δ -54.23 ppm. It is interesting to find that $(Me_3CCH_2)_2InPPh_2$ [14] has been synthesised and is a trimer in the solid state. However, in solution this compound surprisingly adopts a dimer-monomer equilibrium with signals at δ -49.40 ppm and δ -29.95 ppm for a dimer and monomer respectively. The ³¹P{¹H} resonance for 3 gives a singlet at δ -43.19 ppm. Beachley and coworkers [14] have found that a singlet is observed for the dimeric [$(Me_3CCH_2)_2GaPPh_2$]₂ species at δ -25.0 ppm.

3.1. Structure of $[(C_s H_{11})_2 GaP'Bu_2]_2$

The X-ray crystal structure of $[(C_5H_{11})_2GaP^{1}Bu_2]_2$ is presented in Fig. 1. There are two crystallographically independent molecules in an asymmetric unit, one occupying a general position and the other with a C_2 axis through the bridging phosphorus atoms. Selected bond lengths and angles are given in Table 3. The chiral ligands show high thermal parameters, which reflects significant thermal/positional disorder. In order to accommodate this problem, the final refinement was restrained to yield a satisfactory model. As a consequence of this disorder, no attempt was made to position the hydrogen atoms on the chiral ligand and only the hydrogens of the tert-butyl group were positioned and refined. The chiral-ligand makes the compound non-centrosymmetric; unique in this particular class of compounds.

The Ga_2P_2 core is planar in both molecules and not buckled as in [(Me₃CCH₂)₂GaPPh₂]₂ [14]. The Ga-P bond distances (Table 3) compare well with those of related compounds: [(Me₃CCH₂)₂GaPPh₂]₂ [14] Ga- $P_{av} = 2.49(3)$ Å; $["Bu_2GaP'Bu_2]_2$ [15] $Ga-P_{av} = 2.476(5)$ Å; $[Me_2GaP'Bu_2]_2$ [12], $Ga-P_{av} = 2.467(4)$ Å; $[(Me_3CCH_2)Ga(PPh_2)_2]_2$ [16], $Ga-P_{av} = 2.463(9)$ Å; and $[Me_2GaP(^{\dagger}Pr_2)_2]_3$ [17], $Ga-P_{av} = 2.436(3)$ Å, but are longer than the Ga-P distance of 2.36(1) Å found in gallium phosphide [14]. The Ga-P-Ga endocyclic obtuse angles are 95.6(1)° and 93.1(1)° and the P-Ga-P angles in the Ga_2P_2 core are acute, 85.1(1)° and 85.6(1)°. The C-Ga-C angles C(22)-Ga(1)-C(17) = 112.2(5)° and $C(27)-Ga(2)-C(32) = 109.7(5)^{\circ}$ are larger than the C-Ga-C bond angles in ["Bu₂GaP'Bu₂], [15], C-Ga- $C_{av} = 107.0(6)^\circ$, but considerably less than the C-Ga-C angle found in [(Me₃CCH₂)₂GaPPh₂]₂ [13], C-Ga-C_{av} = $123.16(8)^\circ$. The steric hindrance of the substitute influences the degree of distortion away from the ideal tetrahedral angles around the gallium. The chiral ligand is bulky compared with the n-butyl group, forcing the metal to adopt an irregular geometry.

3.2. Structure of $[(C_5H_{11})_2 \ln P'Bu_2]_2$

The structure of $[(C_5H_{11})_2 InP^tBu_2]_2$ is shown in Fig. 2. Selected bond lengths and angles are listed in Table 3. In contrast to the gallium analogue, refinement was carried out (full-matrix least-squares) without any restraint. All hydrogen atoms were positioned and in-

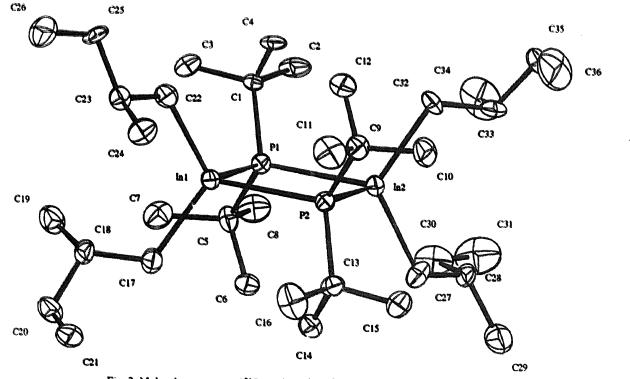


Fig. 2. Molecular structure of $[(C_{3}H_{11})_{2}InP^{t}Bu_{2}]_{2}$ (5) with atom numbering scheme.

cluded in the final refinement (riding model). There is only one molecule in the asymmetric unit of this structure. The central In_2P_2 core is planar and the coordination around the metal is close to tetrahedral. The leastsquare plane calculations of In(1) In(2) P(1) P(2) give an average deviation of 0.001 Å from the plane. The In-P bond lengths are In(1)-P(1) = 2.664(3) Å, In(1)-P(2) = 2.669(3) Å, In(2)-P(1) = 2.660(3) Å and In(2)-P(1) A P(2) = 2.686(3) Å. The calculated average is 2.669 Å, which compares well with the In-P bond distances in $[Me_2 InP'Bu_2]_2$ [5] of 2.637(4) Å and 2.656(4) Å, in $[(C_5H_{11})_2 InP(C_6H_5)_2]_3$ [14] of 2.677(1) Å and 2.699(1) Å, and in $[Me_3SiCH_2)2InP(SiMe_3)_2$ [18], $In-P_{av} =$ 2.627(2) Å, but is longer when compared with $[Me_2In-PPh_2]_3$ [13], 2.593(1) Å and 2.625(2) Å, and indium phosphide [15], 2.541(3) Å. Endocyclic In-P-In bond angles are obtuse, $In(2)-P(1)-In(1) = 96.86(10)^{\circ}$, $In(1)-P(2)-In(2) = 96.10(10)^{\circ}$. As expected, the P-In-P angles are acute, $P(1)-In(1)-P(2) = 83.64(9)^{\circ}$, $P(1)-P(2) = 83.64(9)^{\circ}$, P(1)-P(2), P(1)-P($In(2)-P(2) = 83.39(9)^\circ$. All the In-C bond distances are similar, In(1)-C(17) = 2.182(13) Å, In(1)-C(22) =2.197(13) Å, In(2)-C(27) = 2.209(13) Å and In(2)-C(32) = 2.230(13) Å, and longer than the Ga-C distances noted earlier. The tetrahedral geometry at the metal is slightly distorted and therefore the C-In-C bond angles are larger than the tetrahedral angle (109.47°) , $C(27)-In(2)-C(32) = 117.3(5)^{\circ}$, compared with the C-In-C angle of the dimeric $[Me_2InP'Bu_2]_2$ [5] 108.6(3)°.

Acknowledgements

We thank the I.R.C. at Imperial College, London for an E.P.S.R.C. studentship to SH.

References

- [1] D.C. Bradley, Polyhedron, 13 (1994) 1111.
- [2] P. O'Brien, Precursors for electronic materials, in D.W. Bruce and D. O'Hare (eds.), *Inorganic Materials*, Wiley, Chichester, UK, 1992.
- [3] A.H. Cowley and R.A. Jones, Polyhedron, 13 (1994) 1149.
- [4] A.H. Cowley and R.A. Jones, Angew. Chem., Int. Ed. Engl., 28 (1989) 1208.
- [5] K.A. Aitchison, J.D. Julius Backer-Dirks, D.C. Bradley, M.M. Faktor, D.M. Frigo, M.B. Hursthouse, B. Hussain and R.L. Short, J. Organomet. Chem., 366 (1989) 11.
- [6] R.A. Jones, M.B. Hursthouse, K.M. Malik and G. Wilkinson, J. Am. Chem. Soc., 101 (1979) 4128.
- [7] G.M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, Cambridge, UK, 1979.
- [8] International Tables for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, UK, 1974.
- [9] L. Lardicci, P. Salvadori and P. Palagi, Ann. Chim. Ital., 56 (1966) 1043.
- [10] C.A. Kraus and F.E. Toonder, Proc. N.A.S., 19 (1933) 293.
- [11] L.M. Dennis, R.W. Work, E.G. Rochow and E.M. Chamot, J. Am. Chem. Soc., 56 (1934) 1047.
- [12] A.M. Arif, B.L. Benac, A.H. Cowley, R.A. Jones, K.B. Kidd and C.M. Nunn, New J. Chem., 12 (1988) 553.
- [13] J.A.S. Burns, M.D.B. Dillingham, J.B. Hill, K.D. Gripper, W.T. Pennington and G.H. Robinson, Organometallics, 13 (1994) 1514.
- [14] M.A. Banks, O.T. Beachley, Jr., L.A. Buttrey, M.R. Churchill and J.C. Fettinger, Organometallics, 10 (1991) 1901.
- [15] A.M. Arif, B.L. Benac, A.H. Cowley, R. Geerts, R.A. Jones, K.B. Kidd, and S.T. Schwab, J. Chem. Soc., Chem. Commun., (1986) 1543.
- [16] O.T. Beachley, Jr. and J.D. Maloney, Organometallics, 12 (1993) 229.
- [17] A.H. Cowley, R.A. Jones, M.A. Mardones and C.M. Nunn, Organometallics, 10 (1991) 1635.
- [18] R.L. Wells, A.T. McPhail and M.F. Self, Organometallics, 11 (1992) 221.